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Density-functional theory for the interfacial properties 
of a dipolar fluid 

P I  Teixeirat and M M Telo da Gama 
Departamento de Fisica, Faculdade de Cihcias de Lisboa e Centro de Fisica da Materia 
Condensada, Avenida Professor Gama Pinto 2, P-1699 Lisboa Codex, Portugal 

Received 17 April 1990 

Abstract. We have studied the interfacial properties of a model dipolar Ruid using a gen- 
eralization of the density functional mean-field approximation. The generalization consists 
in weighting eonfigurations in the mean-field average of the perturbative part of the energy 
by the low-density approximation of the radial distribution function. This leads to a bulk 
phasediagramwhichdependsexplicitlyon the strengthofthe multipole moments, incontrast 
with the results of the simpler version of the theory 

The calculated surface tension and density-orientational profile are in fair agreement 
with computer simulation (molecular dynamics) results: !he addition of a dipole moment 
causes the surface tension to increase and there is interfacial ordering induced by purely 
multipolar forces. An extension of the theory to binary Euid mixtures is also briefly discussed. 

1. Introduction 

In recent years the subject of molecular orientation at fluid interfaces has received some 
attention. Orientation phenomena are believed to play an important role in catalysis as 
well as in processes involving biological membranes. The most striking example of a 
system exhibiting surface order is a liquid crystal (LC). However, LCS are remarkably 
difficult to study theoretically, owing to the complexity of shapes and interactions of 
their molecules. Hence a detailed microscopic theory can only be applied to drastically 
simplified models of LCS to provide some insight into the qualitative behaviour of the 
real systems. 

On the other hand, fluids of smaller quasi-spherical multipolar molecules are simple 
enough to be amenable to microscopic treatment, while retaining many interesting 
interfacial properties, as revealed by some recent computer simulation (Townsend et a1 
1985, Wilson etaf 1987, Matsumoto and Kataoka 1988,1989) and experimental (Goh et 
a1 1988) studies. Polar fluids such as water, hydrogen chloride and methanol are of great 
importance in chemistry and biology, as are homonuclear diatomics such as hydrogen 
and nitrogen, in which quadrupolar interactions are thought to be relevant. Further- 
more,fromastudyofthesesystems,informationcan beobtainedwhichmay bepertinent 
to LCS, whose richness of modern technological applications (Shanks 1982) makes them 
worth investigating. 

tPresent address: Faculty of Mathematical Studies, University of Southampton, Southampton SO9 SNH, 
UK. 
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We emphasize that the difficulties involved in a detailed microscopic treatment of 
such systems stem not only from the complexity of intermolecular interactions but 
mainly from the fact that we wish to consider non-uniform three-dimensional fluids, i.e. 
systems where the translational symmetry of the bulk phases is broken at an interface. 
This introduces non-trivial complications which hinder the application of more complex 
approximations developed for homogeneous liquids. 

Gubbins and co-workers developed separate theories for the surface tension and 
density-orientational profile offluidscharacterized by anisotropic interaction potentials. 
In their theories for the surface tension (Gray and Gubbins 1975, Haile et a1 1976a, 
Gubbins et a1 1977) they introduced a drastic approximation for the density profile (the 
Fowler approximation). As for the density-orientational profile, their earlier ‘p-expan- 
sion’ (Haile et a1 1976b) predicts that multipolar-like interactions are unable to cause 
any interfacial ordering. The more elaborate ‘f-expansion’ theory (Thompson et ai 1981) 
nevertheless predicts orientational ordering in the surface due to electrostatic forces. 
This latter theory was used to study a model fluid in which the intermolecular potential 
consists of site-site Lennard-Jones (U) terms plus a quadrupolequadrupole term. 
Predictions are in qualitative agreement with molecular dynamics (MD) simulation 
results for chlorine’ by the same workers (Thompson and Gubbins 1981). However, 
surface tension and structure are calculated independently and using different approxi- 
mations. 

Tarazona and co-workers have also developed a perturbative expansion for the 
Helmholtz free energy of a molecular fluid interface (Tarazona and Navascuks 1982) 
which allowed them to calculate simultaneously the surface tension and the density- 
orientational profile. This theory was later generalized using the density-functional 
formalism (Chac6n er a/ 1983) but it failed to predict any interfacial ordering induced by 
purely multipolar intermolecular potentials. 

More recently, Gubbins and co-workers used the f-expansion and a YBG-type 
equation (Gubbins 1980) to study the liquid-vapour interface of a Stockmayer fluid 
(Eggebrecht et a1 1987a). They also performed an MD simulation of the same system and 
found qualitative agreement between theoretical and simulation results; dipoles tend to 
tie parallel to the interface on the liquid side and the surface tension increases with 
increasing strength of the dipole moment. Calculations also showed that molecules 
favour perpendicular orientations on the vapour side but the simulation data are incon- 
clusive in thisregion. Thisinvestigation wasofparamountimportance since it established 
that interfacial ordering can be induced by purely multipolar forces. 

In this paper we develop a density-functional theory similar to that of Tarazona and 
co-workers in order to clarify whether this type of theory can predict interfacial ordering 
as a result of purely multipolar interactions. The main advantage of density-functional 
theories is that they allow us to calculate microscopic (density-orientation profile) 
and macroscopic (surface tension and adsorption) quantities simultaneously and self- 
consistently. 

Thispaperisarrangedasfollows: insection2wewritedownan(exact but intractable) 
expression for the Helmholtz free energy of a non-uniform fluid characterized by aniso- 
tropic pair potentials and introduce a new approximation which is particularly suitable 
for treating multipolar fluids. In section 3 we apply the theory to a model dipolar fluid. 
In section 4 we present our results for the pbase diagram, density-orientational profile 
and surface tension. Comparison is also made with the simulation results of Eggebrecht 
et a/. Finally in section 5 we briefly discuss some possible extensions of the theory and 
make some concluding remarks. 
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Thegrand potential free energy B of anon-uniformone-component fluidis theminimum 
of the functional (Evans 1979) 

Q[p(r ,  w ) ]  = g’[p(r, w)l + dr dw p(r ,  w)V&, 0) - p dr dw p ( r ,  w )  (1) I 
where p(r ,  w )  is the density-orientational profile in the presence of the external potential 
Vexc(r, 0) and p is the equilibrium chemical potential. r = ( x ,  y ,  z) is the set of position 
coordinates and w = (q, 0, x )  the set of orientation coordinates (Euler angles) of a 
molecule. Y”[p(r, w ) ]  is a unique functional of the density which is independent of the 
external potentials and represents the intrinsic Helmholtz free energy of the inhomo- 
geneous fluid. 

The equilibrium density po(r ,  w) is determined by minimizing equation (l), and the 
surface tension can then be calculated from 

YA = 8 - Q,,l, = 52 + p V  (2) 

wherep is the bulk pressure and V the volume of the system. 

w l ,  w2).  In thiscase, it can be shown (Evans 1979) that 
Let us consider a fluid characterized by a pairwise intermolecular potential q ( r l ,  rz ,  

x d r 1 ,  o1)p(r2, wI, w d  (3) 

qp(rl,rZr wt, 0 2 )  = p(r l . r2 ,  ~ 1 ~ 0 2 )  - qrcdr13r23 w 1 , w d .  

where we have defined a ‘perturbative’ interaction 

(4) 

In equation (3), 9&(r, w ) ]  corresponds to an initial (non-equilibrium) reference 
system in which the particles interact via a pairwise potential qrc,(r,, r z ,  w l ,  w2)  and the 
density isp(r, w) .  g ( r l ,  r2,  w l ,  0,; a) is the pairwise distribution function for a fluid with 
density p ( r ,  w )  and in which the pairwise potential is q , ( r l ,  r2, wI, w 2 )  given by 

~ ~ ( r l , r 2 , w ~ . w 2 ) = ~ ~ ~ ~ ( r ,  rr2r0t ,w2)+a[q ( r l  r r 2 , ~ l  , m ~ ) - P , , d r l . r 2 ~ w ~  ,w2)1. (5) 

This is the familiar coupling constant algorithm, where a parametrizes a linear inte- 
gration path between the reference system and the real system. 

Equation (3) is an exact result. However, the pairwise distribution function of the 
non-uniform system is in general not known. Thus we shall first assume that g depends 
on the position coordinates only through rll = / r l  - r21, which amounts to replacing the 
pairwise distribution function of the non-uniform system by the radial distribution 
functionofthe uniformsystem. This latter functionis again not known exactly. Although 
good approximate theories have been derived and applied to homogeneous systems, 
calculations for interfaces would be too complicated and of little practical interest. 
Therefore it is usual to resort to the simplest mean-field (MF) approximation, i.e. 

& I * ,  w I ,  W Z ;  4 = 1. (6) 

However, if qp is an electrostatic interaction (i.e. one term or a combination of terms 
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from the multipolar series expansion) the MF contribution to the free energy of an 
isotropic bulk phase is zero, since (Gray and Gubbins 1984) 
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i p ’ V ~ d r , 2 d o l  d o 2  qp1’ ( r l2 ,o1 ,w2)  = O .  (7) 

Consequently the MF bulk phase diagram of a multipolar fluid in this approximationdoes 
not depend on the strength of multipole moments, which is unrealistic for all but the 
lowest moments. 

The simplest way to correct this is to use for g(rI2, ol, w2; CY) the low-density 
approximation 

g ( r I2 ,w1 ,wz ;4  = e x p [ - B s ) . ( r 1 2 , ~ 1 , ~ ~ ) 1  (8) 
where p = l /kBT,  k ,  being Boltzmann’s constant and T the temperature. This we call 
the modified mean-field (MMF) approximation. 

The ‘perturbative’ contribution to the free energy is now 

k B T l d r l  2 dr2 d o l  dwz exp[-Ps) ,~t(r12~01,02)1{1-  exp[-ps),(r,z, 01, w d l }  

x p ( r l , w , ) p ( r ? , w ) .  (9) 

Note that by expanding the exponentials in (9) in aTaylor series we are able to improve 
systematically on the MF theory in the low-density limit. The MF is recovered if we retain 
only first-order terms in p .  For reasons of analytical simplicity we shall be interested in 
the first correction to MF, i.e. we shall retain terms up to second order in the series 
expansions. 

In this MMF approximation it is still assumed that the Helmholtz free energy of the 
reference system can be treated in a local-density approximation (see e.g. Telo da Gama 
(1984) for details). The grand potential free energy can then be written in the form 

Q M r .  w)l = If,,Xp(r)) d r  + \ drdw ~ ( r ,  W)[Vtxt(r, w) - P I  

+- dr ,  dr, d o ,  d w 2 e x p [ - B q ~ ~ . t ( r l , r , , w , ,  w2)l kBT 2 I 
X U  - e x p [ - p ~ p ( i l r r Z . ~ I , ~ z ) 1 } ~ ( r I , ~ ~ ) ~ ( r ~ , ~ 2 ) .  (10) 

3. Application to a model dipolar Ruid 

Let us consider a model dipolar fluid characterized by the potential 

where U is the hard-core diameter, o I and w2 are the orientations of the two molecules, 
r is the intermolecular separation and e is a measure of the strength of the spherically 
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symmetric part of the perturbationt. pad is the interaction between two dipoles of equal 
strength p, given by 

where p,  and p2 are unit vectors along the dipole moments and Pis a unit vector along 
the intermolecular axis. 

p d & , W l , 0 2 ) =  -(pCa/r3)[3(F.~ . 4 ( f i 2 * f ) - c i l  (12) 

The free-energy density of the reference system is 
U ) )  = f d p ( r ) )  + p(r)kB~(kd4nf(r,  w)I) (13) 

wheref(r, o) is the orientational distribution function, (A) = JAf(r, o) d o  andfhs(p(r)) 
is the free-energy density of a system of hard spheres, e.g. in the Percus-Yevick com- 
pressihilityapproximation (see, e.g.,TelodaGama 1984). Thesecond termon theright- 
hand side of equation (13) is the contribution to the free-energy density due to the loss 
of entropy caused by the orientational order. For an isotropic fluid,f(r, o) = 1/4n and 
this term vanishes. 

We further note that, since we are considering spherical molecules, any surface- 
inducedorientational ordering will be due entirely to the anisotropy ofthe 'perturbative' 
part of the interaction. Hence, by 'orientation of a molecule' is meant 'orientation of a 
molecular dipole'. 

We now specialize to the case of a planar interface of area A in the X-Y plane. The 
grand potential functional (10) can now be written 

+ l / d z i  Id22 d ~ 2  pett((lz, - Z~~,WI~W;)P(ZI)~(ZL,WI) 

x P(Z2)f(Z2. w2). (14) 
peff can be calculated analytically if we expand the exponentials to second order and 
write pdd as a sum of spherical harmonics (Gray and Gubhins 1984). This will allow us 
toperform most angularintegrationsanalytically , which is a major simplification. Details 
of this calculation are presented in the appendix. Substituting for pet, in equation (14) 
we obtain an expression for the grand potential functional in terms of the density profile 
and the orientational order parameters, defined as 

V , ( Z ) = ( P ~ ( C O S ~ ) ) =  I ~ , ( ~ ~ ~ e ) f ( ~ , e ) d ~  (15a) 

q2(z) = (P,(COS e)) = 1 P,(COS s)f(z, e) do (156) 

P,(cos e) and P2(cos e) being Legendre polynomials. These give the fraction of mol- 
ecules aligned in the zz direction. 

Minimization of the grand potential functional (see, e.g., Telo da Gama 1984) yields 

p = p h S ( m  + k~T(iog[4& e)]) + I dz' VO(lz - Z'IM') - (dz, vl(iz - 2'1) 

x p ( z ' h ~  ( z l ) q l  (2) - IdZ' p;(Iz -2' IMz'h2(zrh(z )  -1dZ' W -  2'1) 

x P(Z')IV2(4 + % ( 4 1  (164 

tNote that the depth of the attractive potential well is 48. 



and p0, q~ ,, cp2 and V are also given in the appendix. The solution of the Euler-Lagrange 
equationisnow reducedto thesolutionofaone-dimensionalintegra1equation.equation 
(16a), for p ( z )  and the consistency relations (15) for the orientational order parameters. 
These equations are solved numerically by an iterative procedure. For details of the 
numerical solution see, e.g., Telo da Gama (1984). By straightforward manipulation of 
equations (15) and use of equation (16b). the orientational order parameters can be 
expressed in terms of known functions (see, e.g., Abramowitz and Stegun 1964). 

4. Results 

The phase diagram is calculated by solving the two simultaneous equations that express 
the constancy of the pressure and the chemical potential in a two-phase system and we 
use forp  and (1 the constant-density limit obtained from our density functional theory. 
Hence the dipolar contribution to the free energy of the bulk phases arises only as a 
second-order effect in pdd. 

In figure 1 we present bulk phase diagrams calculated for different values of the 
reduced dipole moment p& = p o / ( ~ 0 3 ) ’ R .  For small dipolar strengths (pg S 0.5) the 
phase diagram is hardly affected, whereas for large pg (>1.5) the effect on the critical 
temperature is substantial (see table 1). In this approximation, the critical density seems 
to be independent of the dipole strength. The rise in critical temperature approximately 
obeys the law 

k B  ATc/& - (pg)4 (18) 

where ATc = T,(p&) - T‘(0). It follows from figure 1 that the steepness of the density 
profile at a given temperature increases with increasing dipole moment, as the difference 
between coexisting liquid and vapour densities also increases. 

Eggebrecht etal(1987a) argued that, for such models as point multipoles, the singlet 
densitydistributionisinvariant to arotation through n(i.e. thcsystemisinvariant under 
multipole reversal) and therefore all odd-numbered order parameters should vanish. 
Indeed we found q,  to be zero to first and second orders in this approximation and 
believe this to hold for arbitrarily higher orders. Since q I  is the only meaningful order 
parameter in the MF limit (first-order terms only), we expect thai any orientational 
ordering will be due to second-order terms and will reveal itself through non-zero values 
of ‘12. 
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3 

I*= X ,I 16 
Figure 1. Phase diagrams for four different strengths of the reduced dipole moment. Note 
the increase in the critical temperature. The curves for & = 0.0 andp:, = 0.5 are nearly 
coincident. 

Table 1. Critical temperatures for several reduced dipole strengths. In weakly polar liquids, 
T: is almost independent of p; 

p; 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

r: 2.00 2.00 2.m 2.02 ' 2.05 2.12 2.23 2.41 2.64 

In figure 2 we show q2  for T* = 1.0 and four reduced dipole moments. The molecules 
prefer to lie parallel to the interface (q2(z) < 0) on the liquid side, while on the vapour 
side perpendicular orientations (q2(z )  > 0) are favoured. However, for realistic dipole 
strengths (p; - 1) the degree of orientational order is small, i.e. of the order of a few 
per cent. As expected, the orientational structure is washed out as the temperature 
increases, for the entropy term in the free energy becomes dominant. 

In figure 3 we compare our results for ,d2(z) = (5/4n)p(z)q2(z) with those of the 
simulation by Eggebrecht et a1 (1987b). Although the present theory slightly over- 
estimates the degree of interfacial order, the overall agreement is fair, given the fact 
that there is considerable scatter in the simulation data. Figure 4 shows the density- 
orientational profile p(z, e) at three different r-values (measured relative to the Gibbs 
dividing surface). p(z, e) has a maximum for 0 = z/2 on the liquid side (r < 0) and two 
symmetric maxima for 0 = 0 and 0 = 3c on the vapour side ( z  > 0) (compare with figure 
11 of Eggebrecht eta1 (1978a)). 

This orientational structure can be understood in terms of a lowering of the free 
energy. The minimum-energy configuration of a pair of dipoles is top to bottom, and it 
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Figure 2. Orientational order parameter q2 at T = 1.0 for five different dipole strengths. 
The curve for fig = 0.5 iscoincident with the z axis. 

Flgvre 3. h a t  7 = 2.00 for p; = 2.31 (-). Computer simulation data (0) (Eggebrecht el 
d1987(b)forthesamereducedtemperature(T, = T/TJandreduceddipolemoment (Po = 
pD/(k,Tcd)'n) are also shown. The theoryoverestimates the degree of orientational order. 
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is reasonable to expect that dipoles on the liquid side of the interface will adopt it in 
order to minimize the number of nearest parallel and antiparallel neighbours..On the 
vapour side, energy constraints are not so severe and dipoles can orient themselves 
either antiparallel or perpendicular to those in the liquid. The former configuration has 
a lower energy but also a very low entropy, and this is why in our view the latter is 
adopted. 

We also considered the effect of including a quadrupolequadrupole interaction 
term to first order (setting the dipole moment to zero). No orientational ordering was 
observed in this case and no symmetry arguments explain such a result. There are 
nonetheless indications that quadrupole-induced interfacial ordering may arise if 
quadrupolequadrupole terms to second order are included (Sullivan 1989). Thus we 
may conclude that the simplest MF approximation does not predict any preferential 
alignment due to quadrupolar forces. 

In figure 5 we plot our results for the surface tension for different strengths of the 
reduced dipole moment. The addition of a dipole moment causes the surface tension to 
increase in a non-linear fashion. However, if we plot y* against reduced temperature 
T,(=T/T, where T, is the critical temperature) instead, the surface tension curves are 
nearly coincident, which suggests that the effect of the dipole on the surface tension is 
due mainly to its effect on the phase diagram. This is consistent with the finding that the 
degree of orientational order is small. 

In tabIe 2 we compare the results of our calculations with those of the simulation. 
The simulation used a different intermolecular potential; so we scaled the dipole 
moments and the surface tension by T,. The theory slightly overestimates both the 
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3 -  

r*22 

1 -  

0.5.  

1.2 1,3 1.4 1.5 1.6 1.7 1.8 1.9 

I"= K,,l/€ 
Figure 5. Temperature dependence of the reduced surface tension (y' = + / E )  for four 
different dipole strengths. The curves for p ;  = 0.0 and &, = 0.5 are nearly coincident. 

Table 2. Reduced liquid and \apour densities (p' = p d )  and reduced surhcc tension ( f  = 
yd/ksT,) for two dilferenl slrengihs of the reduced dipole moment (ria = p D / ( k n T t d ) '  ;). 

obtained b) simulation (LID) and uirh the presenl theory (blMF) 

0.84 0.72 0.702 0.714 0.0072 0.0106 0.437 0.512 
1.33 0.67 0.743 0.811 0.0013 0,0025 ~ 0.487 0,591 

coexisting bulk densities (by a few percent) and the surface tension (by approximately 
20%). 

5. Conclusions 

The theory described in this paper is the simplest self-consistent approximation for the 
interfacial properties of fluids characterized by multipolar interactions which yields a 
non-zero contribution to the free energy of the bulk phases. This results in a bulk phase 
diagram which depends explicitly on the strength of the multipole moments. 

We have applied the theory to a simple model of a dipolar fluid and found that it 
predicts that orientational ordering can be induced by purely multipolar forces. Results 
are in fair agreement with those of a computer simulation of a Stockmayer fluid. 
Discrepancies can be traced to the fact that we have approximated the radial distribution 
function by its low-density limit and truncated the series expansions at second order. 
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Moreover, the simulation did not use quite the same intermolecular potential as we did 
and there is some uncertainty in the critical temperatures used to reduce the simulation 
data (Eggebrecht er aZ1987a). 

We also found that the effect of the dipole on the surface tension is due mainly to the 
changesin the phase diagram caused by the dipolar contribution to the bulk free energy. 

The present theory can be straightforwardly generalized to binary or ternary 
mixtures. We successfully developed one such extension (to a polar-non-polar binary 
mixture) (Teixeira 1990) but the agreement with existing experimental data for the 
surface tension (for a CH2ClrCS2 mixture) was no better than that achieved using a 
simple MF theory and a choice of spherically symmetric interaction potentials (Aracil et 
a11989). Thuswe believe thestrengthof ourtheory tolieinthe fact that it cansuccessfully 
predict dipole (and possibly quadrupole) induced interfacial orientational ordering. 
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We shall retain terms to second order in the dipole-dipole interaction and to first order 
in the quadrupolequadrupole interaction. This involves evaluating integrals of the type 

2n +m 

f ( z ,  01, ~ 2 )  = 1 d v  RdR%(R, z, q, W I .  w.2)  (A2) 

where x = quat, qZUat, q d d ,  9 2 d ,  9 U a @ d d ,  qqq. Evaluation of integrals containing just 
the spherically symmetric terms is straightforward; so we restrict our attention to multi- 
polar contributions. Conventions adopted for spherical harmonics and Clebsch-Gordan 



122 

coefficients are those of Gray and Gubbins (1984), which serves as a general reference 
for this appendix. 
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~ ~ 

A l .  Evaluation of )dd 

We start by writing qM as a sum of spherical harmonics (Gray and Gubbins 1984): 

For z > U we have 

The angular integral in (A4) is proportional to hm0 and the integral over R vanishes. It 
follows that =is zero for z > U. 

If we now have z s U ,  two cases must be considered: r S U if R2 S u2 - za and r > U 

if R2 > u2 - z2. From the potential separation it results that --be calculated from 
(A4) if the lower limit of the integral over R is changed to vu2 - z2. Hence 
- vdd(z, w I ,  ma) = -(kp2/u3)(z2 - u2)[cos e, cos e2 - &sin e, sin e2 cos(ql - q2)]  

(A51 

for z U. 

dependence as G. Its r-dependence is given by H ( z )  in equation (A14). 
Evaluation of qllarqdd is straightforward, since this term has the same angular 
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The angular integral in (A6) is proportional to S,,,., and it again follows, noting that 
m ' = m [  + m i = - m + m i = - ( m [  +m),that 

I: ~ ( 1 1 2 ; m , m ~ m ) ~ ( 1 1 2 ; m i  - ( m i  + m) - m )  
128n3 Zk, w 2 )  = p4 - 

15 mimzmi 

X Y ~ m ~ ( ~ ~ ) Y ~ m ~ ( ~ ~ ) Y ~ m i ( ~ , ) Y , - ( m i + ~ ) ( ~ ~ ~  

where ml, m, and mi run from - 1 to +l and m = ml f m, = -m'. Hence 

X(Z, wl, U,) = (3np4/i6)(i + COS, e,)(i + COS, e2)(1/z4) ('48) 

forz > o. 
Now let z 6 U. Likewise is again given by (A7) if the lower limit of the integral 

over Risreplaced by &. 02 z Hence 

&(z, w, ,w, )  = (np4/16d)(i0 - iows2 e, - iocosz e, + i8cOs2 e, COS, e,) 
+ (np4/d)(-1 + B COS 2 e, + I COS, e, - 6 COS, e, cosz ez)(z2/d) 

+ (9n/4)(p4/d)[1(3 COS, e, - i)f(3 COS, e, - i)] (z4/d) (A9) 

for z e U. 

A3. Evaluation of 9qq 

Similarly we write qqq as a sum of spherical harmonics (Gray and Gubbins 1984): 

e'.d(70n)1.D C(224;mlmzm) 
~ m 2 m  r5 15 

The angular integral in (All) is again proportional to Sd and the integral over R 
vanishes. Therefore 

Now for z s owe substitute for the lower limit of the integral over R in 
(All). Hence we finally obtain 

is zero for z > U. 
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qqq(z,wl ,m2) = (3nQ2/2$) x [P2(cos~,)P2(cos~2)  + isin' el sin2 e,coD(q, - q2) 

for I S U. 

As the system is invariant in the X-Y plane, the orientational distribution function 
f (z ,  CO) depends on w only through 8, and terms in cos(q, - R) average to zero and can 
be omitted. The final expression for the effective potential is then 

PI Teixeira and M M Telo da Gama 

- 

-tsin(28,)sin(2e2)cos(q, -q2)] x [5(Z/U)4 - ~ ( z / u ) ~  + 11 (A=) 

qeff(z, e,, e,) = ~ ( z )  + B ( I )  COS e, COS e2 + qq,(Z)[$(3 COS? e, - i)$(3 COS? e2 - 111 
- @/z){c(z) + D ( ~ ) ( I +   COS^ e,)(i  + cos2 e,) + E ( ~ ) ( ~ o  - iocosz e, 
- i o  cos2 e2 + 18  COS^ el COS? e,) + ~ ( ~ ) ( - i  + % CO$ e, + g cosz e, 
- 6 COS* e, COS? e,) + G(z)[6(3  COS^ e, - 1 ) ~  COS* e2 - 111 

where 

(64q2&/21) ( d / z ' )  

(16npZ~/d)(z2/3 - d/7) 

where U, E are LJ parameters, f l  is the dipole moment, Q is the quadrupole moment, 0, 
(h) is the angle between the dipole moment of a molecule at z ,  ( z 2 )  and the positive z 
axis and z = il - z2. 

The effective potential terms used in the evaluation of the order parameters and 
grand potential (equations (14), (16) and (17)) are linear combinations of the above: 

qo(z) = A(Z) - PC(ZV2 - (8P/9)D(z) - (8P/3)E(z) (A15a) 

Q)i(z) = -B(z)  + PWz) /2  (A156) 

Vz(Z) = (2P/g)D(Z) + 4PE(Z) - (4P/3)F(z) + PG(z)/2 - qqq(z) (A15c) 

v(z) = (4P/g)D(z) - (46/3)E(z) + PF(z)/6. (A15d) 
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